Inertia‐based spectrum slicing for symmetric quadratic eigenvalue problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Tridiagonal Inverse Quadratic Eigenvalue Problems with Partial Eigendata

In this paper we concern the inverse problem of constructing the n-by-n real symmetric tridiagonal matrices C and K so that the monic quadratic pencil Q(λ) := λI + λC + K (where I is the identity matrix) possesses the given partial eigendata. We first provide the sufficient and necessary conditions for the existence of an exact solution to the inverse problem from the self-conjugate set of pres...

متن کامل

Diagonalizable Quadratic Eigenvalue Problems

A system is defined to be an n× n matrix function L(λ) = λ2M + λD +K where M, D, K ∈ Cn×n and M is nonsingular. First, a careful review is made of the possibility of direct decoupling to a diagonal (real or complex) system by applying congruence or strict equivalence transformations to L(λ). However, the main contribution is a complete description of the much wider class of systems which can be...

متن کامل

Algorithms for hyperbolic quadratic eigenvalue problems

We consider the quadratic eigenvalue problem (QEP) (λ2A+λB+ C)x = 0, where A,B, and C are Hermitian with A positive definite. The QEP is called hyperbolic if (x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ Cn. We show that a relatively efficient test for hyperbolicity can be obtained by computing the eigenvalues of the QEP. A hyperbolic QEP is overdamped if B is positive definite and C is positive ...

متن کامل

On the symmetric quadratic eigenvalue complementarity problem

In this paper, the solution of the symmetric Quadratic Eigenvalue Complementarity Problem (QEiCP) is addressed. The QEiCP has a solution provided the so-called co-regular and co-hyperbolic properties hold and is said to be symmetric if all the matrices involved in its definition are symmetric. We show that under the two conditions stated above the symmetric QEiCP can be reduced to the problem o...

متن کامل

On the Inverse Symmetric Quadratic Eigenvalue Problem

The detailed spectral structure of symmetric, algebraic, quadratic eigenvalue problems has been developed recently. In this paper we take advantage of these canonical forms to provide a detailed analysis of inverse problems of the form: construct the coefficient matrices from the spectral data including the classical eigenvalue/eigenvector data and sign characteristics for the real eigenvalues....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Linear Algebra with Applications

سال: 2020

ISSN: 1070-5325,1099-1506

DOI: 10.1002/nla.2293